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Dissociation Constants of Carboxylic Acids by *C-NMR in DMSO/Water
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Abstract: Measurements on eighteen 3COOH-labeled acids, including hydrogen-bonded and non-hydrogen-bonded
standards are self-consistent and suggest strongly that the aqueous pK,s of bilirubin are within the normal range for
aliphatic carboxylic acids. Our empirical observations provide further evidence that the 3*C-NMR method is valid when

suitable buffers, DMSO concentrations and extrapolations are used and refute recent suggestions to the contrary.
© 1999 Elsevier Science Ltd. All rights reserved.

We recently used '>*C-NMR to estimate pK s of simple mono- and dicarboxylic acids and several com-
pounds related to bilirubin, a natural dicarboxylic acid. We made measurements in water and aqueous solu-
tions containing not more than, and mostly very much less than, 31 mole% (CD;),SO. With these methods
we observed literature values for standard acids and were able to estimate the pK s of bilirubin to be ~4.2—
4.9, as expected for two non-interacting aliphatic COOH groups.! We undertook those studies because of
our interest in applications of *C-NMR to ionization phenomena and our skepticism about recent reports>
that had put the pK s of bilirubin in the range 6.8-9.3, far from the typical aliphatic COOH value of ~5.

A subsequent Letter® has suggested that our estimates are unreliable. The criticisms appear to boil down
to two main objections: (1) that we ignored effects of DMSO on COOH dissociation; and (2) that we failed
to consider intramolecular interactions of carboxyl groups. Additionally, the Letter implied that our mea-
surements of the pK ;s of standard acids were inconsistent with accepted values. In the following we present
additional validation of the '*C-NMR method and show that it provides accurate estimates of the aqueous
pK,s of aliphatic carboxylic acids, even those prone to intramolecular hydrogen bonding.

Fig. 1a shows '3C-NMR titration data for [1-!3C]- phenylacetic acid in solutions containing from 0-31
mol% DMSO. ¢ In these experiments, to avoid DMSO-buffer interactions, pH was adjusted only with HCV/
NaOH and the pH plotted is the measured pH of the
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Figure 1. '3C-NMR titrations of ~99% {1-!*C]- phenyl-
acetic acid in DMSO/H,0. Numbers beside the curves

in (a) and (c) are vol% of DMSO. In (c) curves for 1.8

and 3.6 vol% DMSO have been omitted for clarity. For
other details see the text.

solution used for NMR runs. Textbook titration
curves were obtained, even at 31 mole% DMSO,
and apparent pK,, values for each solvent could be
readily derived by standard methods. Plotting these
apparent pK s versus mole% DMSO (Fig. 1b) gives
an acceptable linear relationship over the range of
DMSO concentrations used and shows that appar-
ent pK,s for DMSO-water solutions containing up
to 31 mole% DMSO can be reliably extrapolated to
give a good estimate of the value in DMSO-free
solution (measured pK,, 4.31; extrapolated, 4.35).
For comparison, Fig. 1c shows '*C-NMR titrations
for 13C-phenylacetic acid taken from an earlier
paper.!? In this experiment, buffers were used to
adjust pH and the pH used in plotting the data was
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Table 1. Aqueous pK, Values of Carboxylic Acids Obtained by Direct Measurement and by
Extrapolation from Apparent pK s Determined in DMSO/Water
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* This work. Other measured values are taken from our previous papers.!
The dotted box surrounds mesobilirubin XIIIo..

the measured pH of the buffer before addition of phenylacetic acid in DMSO. Again, apparent pK s can be
readily derived from the curves.® In this case, plotting log vol% DMSO versus apparent pK,, gives a good
linear relationship over the range of DMSO concentrations used and the pK, for phenylacetic acid in water
can be accurately estimated from the apparent values in DMSO-water (measured pK,, 4.16; extrapolated,
4.16). This is the method that was used, for convenience, in our previous publications.! Excellent NMR
titration curves and linear %#DMSO/pK, relationships were observed for phenylpropionic, adipic and sev-
eral mono and dipyrrolic acids (Table 1). For standards, pK ;s obtained by extrapolation of the DMSO-water
data agreed well with values measured in DMSO-free water and with literature values. For the pyrrole acids,
measured pK, values were close to those of normal aliphatic COOH, as expected. These empirical observa-
tions provide strong support for the reliability of the 3C-NMR titration method using low mole fractions (<
0.31) of DMSO as cosolvent. However, to obtain satisfactory titration curves for sparingly soluble acids by
this method, highly '3C-enriched acids may be required. Careful choice of buffer is also necessary.!
Previously we used principally acetate and Tris buffers, but phosphate buffer was used in a few studies
over a very narrow pH range and KCI/HC], CH;COOH/HC! or dilute HC] were used to attain low pH
conditions. Figure 2a shows the effect of DMSO on the measured pH of several aqueous solvents. For HCI/



KCl, CH;COOH/HCI, acetate and Tris buffers the presence of DMSO up to 8.6 mol% (27 vol%) has little
effect. Above 8.6 mol%, deviations from linearity and from the line of equivalence become progressively
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more noticeable. Nevertheless, smooth titration curves can be obtained even at 31 mol% (64 vol%) DMSO
by suitable choice of solvent (e.g. Fig. 1c). Apparent pK s derived from these showed excellent linear corre-
lation with apparent pK ;s obtained at DMSO concentrations <8.6 mol% (Fig. 1d). In total we have observed
smooth curves for some fifteen acids in buffers containing 31 mol% DMSO. However, our estimates for the
aqueous pK,s of bilirubin do not solely depend on measurements using 31 mol% DMSO since we also
obtained titration curves for the crucial model mesobilirubin XIIIct (Table 1) at 8.6 mol% DMSO.!4¢

The effect of DMSQ is more marked with phosphate than with acetate or Tris buffers (Fig. 2b). Thus, we
used phosphate in only a few measurements over a narrow pH range (6.4-6.9), and not at 31 mol% DMSO.

Our previous studies were not aimed at measuring pK, values of organic acids in DMSO-buffer mix-
tures or effects of DMSO on buffer pH.> Their purpose was to test the use of '*C-NMR for estimating
aqueous pK s of bile pigments and related compounds. Because of the low water solubility of some of these,
we used DMSO-d; as co-solvent when necessary. DMSO has a marked effect on COOH dissociation at high
concentrations,® with apparent pK s rising rapidly with increasing [DMSO] once it exceeds ~50 mol%, but
there have been few studies on its effect at the relatively low concentrations that we used. For this reason we
ran extensive controls on model compounds and acids of known pK,, to establish whether, and under what
conditions, apparent pK s measured in DMSO-water mixtures could be reliably extrapolated to give aque-
ous pK, values. Some of our results are summarized in Table 1. For every acid at every concentration of
DMSO that we used, we observed excellent 3COOH chemical shift titration curves, from which apparent
pK, values could be readily derived. From these, pK, values for water could be estimated by linear extrapo-
lation from plots of apparent pK, versus [DMSO]. As shown in this paper using phenylacetic acid as ex-
ample, titration curves can be constructed by plotting '*C chemical shift versus either the measured pH of the
NMR solution or the measured pH of the buffer before addition of DMSO and acid. Either way, smooth
curves are obtained (Fig. 1) from which apparent pK s can be derived. For concentrations of DMSO up to 31
mole%, and with the buffers used, good linear correlations between apparent pK, and either mole% DMSO
(Fig. 1b) or log vol% DMSO (Fig. 1d) were obtained depending on the method used to construct the titration
curves and derive a set of apparent pK s.” From these, pK,, values for water could be estimated with excei-
lent agreement with the literature for standards. Deviations from linearity in the pK /[DMSO] plots were
observed at DMSO concentrations >31 mole%. For this reason, our measurements were done at DMSO
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mole fractjons not >0.31 and in every case, except for two tetrapyrrolic monocarboxylic acids, were also
determined at much lower concentrations (0.5-10 mole%). The weak effect of DMSO at Jow mole fractions
is consistent with previous studies.® Most of the examples cited® showing large effects of sdded DMSO refer
to solutions containing >50 mole% DMSO or even pure DMSO and have little bearing on our work.

The carboxyl groups in some of the compounds we studied, like those in bilirubin, can undergo internal
hydrogen bonding. It has been suggested® that our methods may be invalid for estimating the aqueous pK, s
of such compounds. However, we tested that very possibility by studying models,? such as maleic and
phthalic acids, in which strong intramolecular hydrogen bonding is known to occur and by examining pairs
of matched compounds in which hydrogen bonding occurs in only one member of the pair (e.g. maleic and
fumaric acids; verdinoid and rubinoid propionic acids) (Table 1).!4* Our results showed clearly that the !3C-
NMR method yields acceptable pK, estimates for those compounds too and that hydrogen-bonding has only
a very weak effect on the acid dissociation of mesobilirubin XIIIc.

Our detailed *3C-NMR studies on eighteen mono and dicarboxylic acids, including several standards,
are self-consistent and show that the method is reliable, provided that suitable aqueous solvents, model
compounds, and standards are used, that DMSO concentrations are kept low, relative to the molar concentra-
tion of water, and that acid concentrations are not too high. From our data we estimate that the pK_s for
bilirubin are in the range ~4.2-4.9,° as most others have found.!d Published pK ;s of 6.8 and 9.3% and of 8.1
and 8.4% cannot all be correct, and our data, taken in foto, provides strong evidence that none of them are.
While our aqueous pK s for bilirubin in water are only estimates, our data on model compounds makes it
seem extremely unlikely that the use of DMSO as cosolvent, as we described, would have led to an underes-
timate of as much as 3 or 4 pK,, units.
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